Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 65(21): 215015, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32756019

ABSTRACT

BrachyView is a novel in-body imaging system developed to provide real-time intraoperative dosimetry for low dose rate prostate brachytherapy treatments. Seed positions can be reconstructed after in-vivo implantation using a high-resolution pinhole gamma camera inserted into the patient rectum. The obtained data is a set of 2D projections of the seeds on the image plane. The 3D reconstruction algorithm requires the identification of the seed's centre of mass. This work presents the development and techniques adopted to build an algorithm that provides the means for fully automatic seed centre of mass identification and 3D position reconstruction for real-time applications. The algorithm presented uses a local feature detector, speeded up robust features, to perform detection of brachytherapy seed 2D projections from images, allowing for robust seed identification. Initial results have been obtained with datasets of 30, 96 and 98 I-125 brachytherapy seeds implanted into a prostate gel phantom. It can detect 97% of seeds and correctly match 97% of seeds. The average overall computation time of 2.75 s per image and improved reconstruction accuracy of 22.87% for the 98 seed dataset was noted. Elimination processes for initial false positive detection removal have shown to be extremely effective, resulting in a 99.9% reduction of false positives, and when paired with automatic frame alignment and subtraction procedures allows for the effective removal of excess counts generated by previously implanted needles. The proposed algorithm will allow the BrachyView system to be used as a real-time intraoperative dosimetry tool for low dose rate prostate brachytherapy treatments.


Subject(s)
Algorithms , Brachytherapy/methods , Prostheses and Implants , Radiation Dosage , Automation , Humans , Iodine Radioisotopes/therapeutic use , Male , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiometry , Radiotherapy Dosage , Subtraction Technique , Time Factors
2.
Phys Med ; 66: 66-76, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31563727

ABSTRACT

PURPOSE: BrachyView is a novel in-body imaging system developed with the objective to provide real-time intraoperative dosimetry for low dose rate (LDR) prostate brachytherapy treatments. The BrachyView coordinates combined with conventional transrectal ultrasound (TRUS) imaging, provides the possibility to localise the effective position of the implanted seeds inside the prostate volume, providing a unique tool for intra-operative verification of the quality of the implantation. This research presents the first complete LDR brachytherapy plan reconstructed by the BrachyView system and is used to evaluate the effectiveness of an imaging algorithm with baseline subtraction. METHODS: A plan featuring 98 I-125 brachytherapy seeds, with an average activity of 0.248 mCi, were implanted into a prostate gel phantom under TRUS guidance. Images of implanted seeds were obtained by the BrachyView after the implantation of seeds. The baseline subtraction algorithm is applied as a pixel-to-pixel counts subtraction and is applied to every second projection obtained after the implantation of each needle. Seed positions and effectiveness of the baseline reconstruction in the identification of seeds were verified by a high-resolution post-implant CT scan. RESULTS: A complete brachytherapy plan has been reconstructed with a 100% detection rate. This is possible due to the effectiveness of the baseline subtraction, with its application an overall increase of 11.3% in position accuracy and 8.2% increase in detection rate was noted. CONCLUSION: It has been demonstrated that the BrachyView system shows the potential to be a solution to providing clinics with the means for intraoperative dosimetry for LDR prostate brachytherapy treatments.


Subject(s)
Algorithms , Brachytherapy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Subtraction Technique , Humans , Male , Phantoms, Imaging , Prostheses and Implants , Radiotherapy Dosage , Tomography, X-Ray Computed , Ultrasonography
3.
Phys Med Biol ; 64(8): 085002, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30808009

ABSTRACT

A prototype in-body gamma camera system with integrated trans-rectal ultrasound (TRUS) and associated real-time image acquisition and analysis software was developed for intraoperative source tracking in high dose rate (HDR) brachytherapy. The accuracy and temporal resolution of the system was validated experimentally using a deformable tissue-equivalent prostate gel phantom and a full clinical HDR treatment plan. The BrachyView system was able to measure 78% of the 200 source positions with an accuracy of better than 1 mm. A minimum acquisition time of 0.28 s/frame was required to achieve this accuracy, restricting dwell times to a minimum of 0.3 s. Additionally, the performance of the BrachyView-TRUS fusion probe for mapping the spatial location of the tracked source within the prostate volume was evaluated. A global coordinate system was defined by scanning the phantom with the probe in situ using a CT scanner, and was subsequently used for co-registration of the BrachyView and TRUS fields of view (FoVs). TRUS imaging was used to segment the prostate volume and reconstruct it into a three-dimensional (3D) image. Fusion of the estimated source locations with the 3D prostate image was performed using integrated 3D visualisation software. HDR BrachyView is demonstrated to be a valuable tool for intraoperative source tracking in HDR brachytherapy, capable of resolving source dwell locations relative to the prostate anatomy when combined with TRUS.


Subject(s)
Brachytherapy/methods , Prostatic Neoplasms/diagnostic imaging , Software , Ultrasonography/methods , Brachytherapy/instrumentation , Gamma Cameras , Humans , Male , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Ultrasonography/instrumentation
4.
Phys Med ; 34: 55-64, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28118951

ABSTRACT

PURPOSE: BrachyView is a novel in-body imaging system which aims to provide LDR brachytherapy seeds position reconstruction within the prostate in real-time. The first prototype is presented in this study: the probe consists of a gamma camera featuring three single cone pinhole collimators embedded in a tungsten tube, above three, high resolution pixelated detectors (Timepix). METHODS: The prostate was imaged with a TRUS system using a sagittal crystal with a 2.5mm slice thickness. Eleven needles containing a total of thirty 0.508U125I seeds were implanted under ultrasound guidance. A CT scan was used to localise the seed positions, as well as provide a reference when performing the image co-registration between the BrachyView coordinate system and the TRUS coordinate system. An in-house visualisation software interface was developed to provide a quantitative 3D reconstructed prostate based on the TRUS images and co-registered with the LDR seeds in situ. A rigid body image registration was performed between the BrachyView and TRUS systems, with the BrachyView and CT-derived source locations compared. RESULTS: The reconstructed seed positions determined by the BrachyView probe showed a maximum discrepancy of 1.78mm, with 75% of the seeds reconstructed within 1mm of their nominal location. An accurate co-registration between the BrachyView and TRUS coordinate system was established. CONCLUSIONS: The BrachyView system has shown its ability to reconstruct all implanted LDR seeds within a tissue equivalent prostate gel phantom, providing both anatomical and seed position information in a single interface.


Subject(s)
Brachytherapy/instrumentation , Phantoms, Imaging , Prostate/diagnostic imaging , Radiation Dosage , Radiotherapy, Image-Guided/instrumentation , Rectum , Ultrasonography/instrumentation , Gels , Humans , Image Processing, Computer-Assisted , Male , Prostate/radiation effects , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage
5.
Med Phys ; 43(9): 5188, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27587049

ABSTRACT

PURPOSE: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. METHODS: The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enabling shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). RESULTS: (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. CONCLUSIONS: A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical challenges and solutions.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Particle Accelerators , Equipment Design , Feasibility Studies , Magnetic Fields , Radiotherapy, Image-Guided
6.
Med Phys ; 42(12): 7098-107, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26632063

ABSTRACT

PURPOSE: This paper presents initial experimental results from a prototype of high dose rate (HDR) BrachyView, a novel in-body source tracking system for HDR brachytherapy based on a multipinhole tungsten collimator and a high resolution pixellated silicon detector array. The probe and its associated position estimation algorithms are validated and a comprehensive evaluation of the accuracy of its position estimation capabilities is presented. METHODS: The HDR brachytherapy source is moved through a sequence of positions in a prostate phantom, for various displacements in x, y, and z. For each position, multiple image acquisitions are performed, and source positions are reconstructed. Error estimates in each dimension are calculated at each source position and combined to calculate overall positioning errors. Gafchromic film is used to validate the accuracy of source placement within the phantom. RESULTS: More than 90% of evaluated source positions were estimated with an error of less than one millimeter, with the worst-case error being 1.3 mm. Experimental results were in close agreement with previously published Monte Carlo simulation results. CONCLUSIONS: The prototype of HDR BrachyView demonstrates a satisfactory level of accuracy in its source position estimation, and additional improvements are achievable with further refinement of HDR BrachyView's image processing algorithms.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Prostate/diagnostic imaging , Radiotherapy, Image-Guided/instrumentation , Radiotherapy, Image-Guided/methods , Algorithms , Diagnostic Imaging/instrumentation , Diagnostic Imaging/methods , Equipment Design , Humans , Male , Models, Biological , Phantoms, Imaging , Prostate/radiation effects , Radiography , Radiometry/instrumentation , Radiometry/methods , Radiotherapy Dosage , Silicon , Tungsten
7.
Phys Med Biol ; 59(21): 6659, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25325249

ABSTRACT

HDR BrachyView is a novel in-body dosimetric imaging system for real-time monitoring and verification of the source position in high dose rate (HDR) prostate brachytherapy treatment. It is based on a high-resolution pixelated detector array with a semi-cylindrical multi-pinhole tungsten collimator and is designed to fit inside a compact rectal probe, and is able to resolve the 3D position of the source with a maximum error of 1.5 mm. This paper presents an evaluation of the additional dose that will be delivered to the patient as a result of backscatter radiation from the collimator. Monte Carlo simulations of planar and cylindrical collimators embedded in a tissue-equivalent phantom were performed using Geant4, with an (192)Ir source placed at two different source-collimator distances. The planar configuration was replicated experimentally to validate the simulations, with a MOSkin dosimetry probe used to measure dose at three distances from the collimator. For the cylindrical collimator simulation, backscatter dose enhancement was calculated as a function of axial and azimuthal displacement, and dose distribution maps were generated at three distances from the collimator surface. Although significant backscatter dose enhancement was observed for both geometries immediately adjacent to the collimator, simulations and experiments indicate that backscatter dose is negligible at distances beyond 1 mm from the collimator. Since HDR BrachyView is enclosed within a 1 mm thick tissue-equivalent plastic shell, all backscatter radiation resulting from its use will therefore be absorbed before reaching the rectal wall or other tissues. dosimetry, brachytherapy, HDR.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy, Image-Guided/methods , Tungsten/chemistry , Computer Simulation , Humans , Image Processing, Computer-Assisted/methods , Male , Monte Carlo Method , Prostatic Neoplasms/pathology , Scattering, Radiation , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...